Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/golang_books/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Golang Books | Telegram Webview: golang_books/982 -
Telegram Group & Telegram Channel
🛠️ История создания “storage-agnostic” message queue

Автор — Fahim Faisaal — делится опытом разработки гибкой очереди задач на Go, которая может использовать любые хранилища: in-memory, Redis, SQLite и др. :contentReference[oaicite:0]{index=0}

Контекст:
Занимаясь на Go, автор вдохновился инструментами из Node.js экосистемы (BullMQ, RabbitMQ) и захотел сделать что-то похожее, но с нуля, без зависимостей. Так родилась идея — сначала он создал Gocq (Go Concurrent Queue): простую concurrent-очередь, работающую через каналы :contentReference[oaicite:1]{index=1}.

Основная проблема

Gocq отлично работал в памяти, но не поддерживал устойчивое хранение задач.
Автор задумался: а можно ли сделать очередь, не зависящую от конкретного хранилища — так, чтобы её можно было подключить к Redis, SQLite или совсем без них?
🧱 Как это реализовано в VarMQ

После рефакторинга Gocq был разделён на два компонента:
1. Worker pool — пул воркеров, обрабатывающих задачи.
2. Queue interface — абстракция над очередью, не зависящая от реализации.

Теперь воркер просто берёт задачи из очереди, не зная, где они живут. :contentReference[oaicite:2]{index=2}

---

### 🧠 Пример использования

- In-memory очередь:

w := varmq.NewVoidWorker(func(data any) {
// обработка задачи
}, 2)
q := w.BindQueue()


- С SQLite-поддержкой:

import "github.com/goptics/sqliteq"

db := sqliteq.New("test.db")
pq, _ := db.NewQueue("orders")
q := w.WithPersistentQueue(pq)


- С Redis (для распределённой обработки):

import "github.com/goptics/redisq"

rdb := redisq.New("redis://localhost:6379")
pq := rdb.NewDistributedQueue("transactions")
q := w.WithDistributedQueue(pq)


В итоге воркер обрабатывает задачи одинаково — независимо от хранилища. :contentReference[oaicite:3]{index=3}

Почему это круто


- Гибкость: адаптеры позволяют легко менять хранилище без правок воркера.
- Минимальные зависимости: в ядре — zero-deps, весь функционал — через адаптеры.
- Self-hosted и легковесно: можно развернуть локально или в продакшене.
- Написано на Go: использует горутины и каналы, удобен и эффективен.

📣 Отзывы сообщества

На Reddit отметили, что автор добился "queue system that doesn’t care if your storage is Redis, SQLite, or even in-memory" :contentReference[oaicite:4]{index=4}

🔗 Ссылки
- Статья: A Story of Building a Storage‑Agnostic Message Queue на DEV :contentReference[oaicite:5]{index=5}
- GitHub VarMQ (Var-storage-agnostic message queue): репозиторий с кодом адаптеров и примерами использования :contentReference[oaicite:6]{index=6}

Итог: VarMQ — это элегантное решение на Go для создания задач-очереди, универсально по отношению к хранилищу: выбрал нужный адаптер — и система работает.

📌 Читать



tg-me.com/golang_books/982
Create:
Last Update:

🛠️ История создания “storage-agnostic” message queue

Автор — Fahim Faisaal — делится опытом разработки гибкой очереди задач на Go, которая может использовать любые хранилища: in-memory, Redis, SQLite и др. :contentReference[oaicite:0]{index=0}

Контекст:
Занимаясь на Go, автор вдохновился инструментами из Node.js экосистемы (BullMQ, RabbitMQ) и захотел сделать что-то похожее, но с нуля, без зависимостей. Так родилась идея — сначала он создал Gocq (Go Concurrent Queue): простую concurrent-очередь, работающую через каналы :contentReference[oaicite:1]{index=1}.

Основная проблема

Gocq отлично работал в памяти, но не поддерживал устойчивое хранение задач.
Автор задумался: а можно ли сделать очередь, не зависящую от конкретного хранилища — так, чтобы её можно было подключить к Redis, SQLite или совсем без них?
🧱 Как это реализовано в VarMQ

После рефакторинга Gocq был разделён на два компонента:
1. Worker pool — пул воркеров, обрабатывающих задачи.
2. Queue interface — абстракция над очередью, не зависящая от реализации.

Теперь воркер просто берёт задачи из очереди, не зная, где они живут. :contentReference[oaicite:2]{index=2}

---

### 🧠 Пример использования

- In-memory очередь:


w := varmq.NewVoidWorker(func(data any) {
// обработка задачи
}, 2)
q := w.BindQueue()


- С SQLite-поддержкой:

import "github.com/goptics/sqliteq"

db := sqliteq.New("test.db")
pq, _ := db.NewQueue("orders")
q := w.WithPersistentQueue(pq)


- С Redis (для распределённой обработки):

import "github.com/goptics/redisq"

rdb := redisq.New("redis://localhost:6379")
pq := rdb.NewDistributedQueue("transactions")
q := w.WithDistributedQueue(pq)


В итоге воркер обрабатывает задачи одинаково — независимо от хранилища. :contentReference[oaicite:3]{index=3}

Почему это круто


- Гибкость: адаптеры позволяют легко менять хранилище без правок воркера.
- Минимальные зависимости: в ядре — zero-deps, весь функционал — через адаптеры.
- Self-hosted и легковесно: можно развернуть локально или в продакшене.
- Написано на Go: использует горутины и каналы, удобен и эффективен.

📣 Отзывы сообщества

На Reddit отметили, что автор добился "queue system that doesn’t care if your storage is Redis, SQLite, or even in-memory" :contentReference[oaicite:4]{index=4}

🔗 Ссылки
- Статья: A Story of Building a Storage‑Agnostic Message Queue на DEV :contentReference[oaicite:5]{index=5}
- GitHub VarMQ (Var-storage-agnostic message queue): репозиторий с кодом адаптеров и примерами использования :contentReference[oaicite:6]{index=6}

Итог: VarMQ — это элегантное решение на Go для создания задач-очереди, универсально по отношению к хранилищу: выбрал нужный адаптер — и система работает.

📌 Читать

BY Golang Books




Share with your friend now:
tg-me.com/golang_books/982

View MORE
Open in Telegram


Golang Books Telegram | DID YOU KNOW?

Date: |

Export WhatsApp stickers to Telegram on iPhone

You can’t. What you can do, though, is use WhatsApp’s and Telegram’s web platforms to transfer stickers. It’s easy, but might take a while.Open WhatsApp in your browser, find a sticker you like in a chat, and right-click on it to save it as an image. The file won’t be a picture, though—it’s a webpage and will have a .webp extension. Don’t be scared, this is the way. Repeat this step to save as many stickers as you want.Then, open Telegram in your browser and go into your Saved messages chat. Just as you’d share a file with a friend, click the Share file button on the bottom left of the chat window (it looks like a dog-eared paper), and select the .webp files you downloaded. Click Open and you’ll see your stickers in your Saved messages chat. This is now your sticker depository. To use them, forward them as you would a message from one chat to the other: by clicking or long-pressing on the sticker, and then choosing Forward.

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Golang Books from cn


Telegram Golang Books
FROM USA